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The plane problem of a deformed bubble rising in a fluidized bed is considered. The bubble is 
represented by a reflection of a circular segment in a vertical axis. 

LET ab BE the radius of the circular segment and 2c the length of the part of the axis of symmetry that 

belongs to the bubble. We will use a system of bipolar coordinates (E,, q): ~=EI, -Cl,, r-t = ln(r,/r,), 
attached to the bubble, where 8, and r, (i= 1, 2) are the polar angles and radii of the current point, 
respectively (Fig. 1). 

The equation of the bubble surface in (E, q) coordinates has the form 5 = 7~112, and the leading stagna- 

tion point corresponds to q = -=. The parameter n E [0, 21 characterizes the degree of deformation of the 
bubble’s cavity: the cavities are shaped like an apple for n E (0, 1) and like a lens for n E (1, 2). The case 

n = 0 corresponds to a cavity in a form of two circular bubbles in contact with each other (or to a bubble 

touching a vertical wall), for n = 1 there is no deformation of a cavity, and we have a single circular 
bubble, and for n = 2 and ub -+ = the cavity degenerates to a slit of length 2c parallel to the flow direction. 

Within a framework of Davidson’s model the motion of particles around a bubble in a fluidized bed is 

identical with the irrotational flow of an ideal fluid with overall pressure p= p, +p,, where p, is the 

pressure in the fluid phase and p, is the effective pressure in the solid phase [I]. The stream function of 
this flow has the form [2] 

yt* 2 sin(25/ n)U&b 
n ch(2q/n)-cos(2{/n) 

Here 6 = c/a, = sin(lvl/2) and U, is the terminal rising velocity of the bubble. 
The boundary conditions for the pressure in both phases at the bubble surface are as follows: 

where pb is the fluid-phase pressure everywhere in the interior of the bubble. Taking this into account we 

will write the Bernoulli integral for the leading stagnation point A,, and for a near-by point A on the 

cavity surface 
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FIG. 1. 

F1a.2. 

where d, is the density of dispersed particles, p is the volume concentration of the solid phase, g is the 
acceleration due to gravity, z is the vertical coordinate of the point A, measured from the equator in a 
direction opposite to g, and W, is the velocity distribution of the particles along the cavity surface. This 

distribution has the form [2] 

4Ub chq-coS(M12) 
w’ =T ch(2q/n)+.l 

In addition 

C[C’l -cos(ler/2)1 
c--z= chq-aIs(m/2) 
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By virtue of the latter two equations the Bernoulli integral is transformed into the dimensionless form 

1 sin(nr/2)[en -cos(nn/2)] 2 [chq-cos(lm/2)]’ 
p(q)=, 

chq-cos(rm/2) -z ch4(q/n) 

Here p(q) = (p, - p,,,)l d,pUi, Fr = G /gu, is the Froude number, and p(q) + 0 as A + A,, (q + -). 
The estimate of the bubble rising velocity by the Davis-Taylor method [3] is based on the assumption 

that the bubble surface (at least in the neighbourhood of the leading stagnation point) coincides with the 

line of constant pressure of the dispersed phase (p(q) = 0), and both terms on the right-hand side of the 

expression for p(q) have the same order of smallness as q + -0~. In fact, letting n = 1 we conclude that 
both terms are of the order of ezl, as q + 00, which yields Fr = )! corresponding to the familiar Davis- 

Taylor formula for the rising velocity of a bubble with circular front 

For n f 1 we have 

Isin(lvll2)[e?-m~(NII2)1_~~, q~_~ 
Fr chq-cos(rcn/2) 

2 [chq-~sW2)1* _,-2r1(1-2/n), q+_” 

7 4 
ch (rlln) 

For n = X we have -2q(l-2/n)=q, so that U, = ~“‘)(g~,)“~, and 2cla, = 43 corresponds to a 
contour shaped like a lens elongated in the flow direction. 

For n # 1 and n # X the above procedure for evaluating U, for the bubble shapes considered does not 
hold. For instance, for n E (0, 1) the bubble surface in the neighbourhood of the leading stagnation point 
cannot be a line where the solid phase pressure is constant, which is a necessary condition for the steady 

rising of a bubble; in thii case, the right-hand side of the formula for p(q) is essentially negative. 
From the arguments given above it follows that for n # 1 and n f ): the rising of a bubble with an 

irregular leading stagnation point is unsteady in principle. This is confirmed by the observations of so- 
called “fingers” that occur at the bubble surface in the neighbourhood of the leading stagnation point. 

The evolution of such “fingers” often leads to breakdown of a rising bubble [3]. 
On the other hand, the existence of a bubble shape with a stable front for n = X may explain the typical 

elongation of flat bubbles (or bubbles at the wall,) in a fluidixed bed; the vertical dimensions of such a 

bubble is often twice the horizontal dimensions [3] (Fig. 2). The presence of a cusp at the leading 
stagnation point at the cavity surface does not imply any essential drawback of the model, since, by virtue 
of the boundedness of w, everywhere at the cavity surface, the flow pattern in the neighbourhood of the 
leading stagnation point is modified only slightly after minor “regularizing” smoothing of the contour. 
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